Chapter 6. End-of-Chapter Solutions

1.

Note that the question asked for monoprotic acids only.

- (a) pH = 5.0: acetic acid, $pK_a = 4.76$.
- (b) pH = 7.0: there is not a good monoprotic organic acid in Table 5.8 to buffer at this pH. Alternate choices are the inorganic hypochlorous acid, $pK_a = 7.54$, or the diprotic carbonic acid, $pK_{a1} = 6.35$.
- (c) pH = 9.0: phenol, p K_a = 9.99. Phenol is not used as a pH buffer in practice due to toxicity, ammonium ion, p K_a = 9.25, is an alternate inorganic choice.

2.

- (a) pH = 5.0: citric acid, $pK_{a2} = 4.76$.
- (b) pH = 7.0: carbonic acid, $pK_{a1} = 6.35$.
- (c) pH = 9.0: carbonic acid, $pK_{a2} = 10.33$. (A bit far from 9.0, but the best choice in Table 5.8.)

3.

 $\Sigma \alpha_i = 1.0$. Since alpha is a fraction, the total of all alpha's must be one. This condition is always true and it does not depend on ionic strength. Individual fractions might change slightly as I_c changes, but the total must still be 1.0.

4.
$$H_3PO_4 + OH^- \rightarrow H_2PO_4^-$$
 0.60 mol OH⁻ $H_2PO_4^- + OH^- \rightarrow HPO_4^{2^-}$ 0.60 mol OH⁻ HPO₄²⁻ + OH⁻ \rightarrow PO₄³⁻ 0.30 mol OH⁻ total = 1.5 mol of NaOH

6. Contents of initial solution: (0.15 M Na⁺, 0.05 M PO₄³⁻):

$$I_c = 0.5\{(+1)^2(0.15 \text{ M}) + (-3)2(0.05 \text{ M})\} = 0.30 \text{ M}$$

Contents of solution after adding HCl: $(0.15 \text{ M Na}^+, 0.10 \text{ M Cl}^-, 0.05 \text{ M H}_2\text{PO}_4^-)$: $I_c = 0.5\{(+1)2(0.15 \text{ M}) + (-1)^2(0.10 \text{ M}) + (-1)^2(0.05 \text{ M})\} = 0.15 \text{ M}$

7.

- (a) Adding 0.070 moles of NaOH to a solution containing 0.040 moles of a monoprotic weak acid: excess OH⁻, so basic but not a buffer solution.
- (b) Adding 0.040 moles of NaOH to a solution containing 0.070 moles of a monoprotic weak acid: significant amounts of a weak acid and conjugate base, so a buffer solution, pH depends on pK_a of HA.
- (c) Adding 0.040 moles of NaOH to a solution containing 0.070 moles of a potassium hydrogen phthalate: Buffer solution at pH = 5.4.
- (d) Adding 0.040 moles of HCl to a solution containing 0.070 moles of a potassium hydrogen phthalate: Buffer solution at pH = 2.9.

8. Using $p[H_3O^+] = 0.5(pK_{a1} + pK_{a2})$: a) $p[H_3O^+] = 0.5(7.20 + 12.35) = 9.78$ b) $p[H_3O^+] = 0.5(6.35 + 10.33) = 8.34$

- c) 1.0×10^{-8} M is less than the intrinsic [H₃O⁺] of pure water, so p[H₃O⁺] is expected to be 7.0 or just slightly higher.
- 9. From the phosphate alpha plots (Figure 6.6) at pH = 3, we see that we need $H_3PO_4 = 0.1$ and $H_2PO_4^- = 0.9$. Since we are starting with 0.500 moles of phosphate, we will need 0.0500 moles of H_3PO_4 and 0.450 moles of $H_2PO_4^-$ to achieve this ratio. Protonating all of the PO_4^{3-} to obtain HPO_4^{2-} requires 0.500 mol of HCl. Protonating all of the HPO_4^{2-} to obtain $H_2PO_4^-$ requires another 0.500 mol of HCl. Finally we add 0.050 mol of HCl to convert 0.050 mol of $H_2PO_4^-$ to 0.050 mol of H_3PO_4 . The total amount of strong acid added is 0.500 mol + 0.500 mol + 0.050 mol = 1.05 mol HCl.

10.

- (a) halfway point (for the first acidic proton): the solution contains equal amounts of $C_6H_4(COOH)_2$ and $C_8H_5O_4^-$, so $p[H_3O^+] = pK_{a1} = 2.95$.
- (b) the first equivalence point: the solution contains predominantly $C_8H_5O_4^-$, so $p[H_3O^+] =$ $0.5(pK_{a1} + pK_{a2}) = 4.18$
- (c) the second equivalence point: the solution contains $C_8H_4O_4^{\ 2-}$, so solve as a weak base problem correcting for dilution during titration:

$$K_{\rm b} = \frac{K_{\rm w}}{3.91 \times 10^{-6}} = \frac{[C_8 H_5 O_4^{-}][OH^{-}]}{[C_8 H_4 O_4^{2^{-}}]}$$

$$2.58 \times 10^{-9} = \frac{[OH^-]^2}{0.0333 \text{ M} - [OH^-]}$$

$$[OH^{-}] = 9.28 \times 10^{-6} M$$

$$p[OH^{-}] = 5.03$$

$$p[H_3O^+] = 14.0 - 5.02 = 8.97$$

11.

Determining the error in the previous answer requires predicting $p[H_3O^+]$ after correcting pK_a for ionic strength. The solution at the halfway point contains 0.05 M Na⁺ and 0.05 M C₈H₅O₄⁻, and the ionic strength is 0.05 M. Activity coefficients are 0.834 and 0.854 for C₈H₅O₄ and H₃O⁺, respectively. Correcting K_a :

$$K_{\rm a}' = \frac{{\rm [H_3O^+]}^2}{c_{\rm HA} - {\rm [H_3O^+]}}$$

$$p[H_3O^+] = 2.95 + log \frac{1.12 \times 10^{-3}}{(0.834)(0.854)} = 1.57 \times 10^{-3}$$

Now using this K_a' , $[H_3O^+] = 1.57 \times 10^{-3}$ M and $p[H_3O^+] = 2.80$. The difference in results is 0.15 pH units.

12.

The predominant form of phosphate can be viewed from the alpha plots directly. Find the desired pH on the x-axis and then determine which curve has the largest alpha value at that pH.

- a) pH = 4: $H_2PO_4^-$
- b) pH = 6: $H_2PO_4^-$
- c) pH = 8: HPO_4^{2-} d) pH = 10: HPO_4^{2-}

13.

Since the pH of a saturated solution is approximately halfway between pK_{a1} and pK_{a2} , the form of NTA in the solution must be H_2NTA^- .

14.

After the neutralization reaction, the solution contains $[C_6H_4(COOH)_2] = 0.010 \text{ M}$ and $[C_8H_5O_4^-] = 0.015 \text{ M}$. Using the Henderson-Hasselbalch expression gives:

$$p[H_3O^+] = 2.95 + log \frac{0.015 \text{ M}}{0.010 \text{ M}} = 3.13 \text{ M}$$

15.

Interpolating in the raw data values in alpha-plot-3protic.xls gives $\alpha_{HPO42-} = 4.5 \times 10^{-6}$. The value can also be found using Equation 6.17.

16.

The concentration of any given species is the fraction of that species times the total concentration:

$$[\text{HPO}_4^{2^-}] = (4.5 \times 10^{-6})(0.0500 \text{ M}) = 2.2 \times 10^{-7} \text{ M HPO}_4^{2^-}$$

17.

The values can be obtained by Henderson-Hasselbalch calculations or from alpha plot data. Some pH values are as follows:

HCO ₃ ⁻ :CO ₃ ²⁻	$p[H_3O^+]$
0.05	9.0
0.10	9.3
0.15	9.5
0.50	10.3
0.85	11.1
0.90	11.3
0.95	11.6

18

Using alpha-plot-3protic or a direct calculation shows that α_{CO3} is 1.5×10^{-5} . The [CO₃²⁻] concentration is 1.5×10^{-6} M, which is much smaller than [HCO₃⁻].

19.

Note that the recipe specifies adjusting the pH to 7.4, which is done by adding a small amount of strong acid or strong base to this buffer solution. Due to the high ionic strength and day-to-day temperature fluctuations, it is easier to measure and adjust the pH than to try to calculate the pH. Using formula weights and combining common ions, the solution contains:

```
1.616 mol +1 ions

1.413 mol -1 ions

0.101 mol -2 ions

in a solution volume of 1 L.

I_c = 0.5\{(+1)^2(1.616 \text{ M}) + (-1)^2(1.413 \text{ M}) + (-2)^2(0.101 \text{ M})\} = 1.72 \text{ M}
```