Chapter 5. End-of-Chapter Solutions

1.

(a) bucket of deionized water:

$$H_2O$$
, H_3O^+ , OH^-

(b) small amount of HNO₃ added:

$$H_2O, H_3O^+, NO_3^-, OH^-$$

Note that NO₃⁻ is a strong electrolyte so we assume that HNO₃ dissociates completely. [OH⁻] will be very small relative to the concentrations of the other ions in solution, but OH⁻ is present.

(c) small amount of acetic acid, CH₃COOH, added:

$$H_2O$$
, CH_3COOH , H_3O^+ , CH_3COO^- , OH^-

CH₃COOH dissociates to a small extent, so we call it a weak acid. [CH₃COOH] is significant and much larger than [H₃O⁺] or [CH₃COO⁻]. One way to define a weak acid is simply as an acid that does not dissociate completely in aqueous solution. Again, [OH⁻] will be very small relative to the other concentrations in solution, but OH⁻ is present.

2.

- (a) Ba(NO₃)₂: neutral, barium nitrate is a strong electrolyte
- (b) Ca(ClO₄)₂: neutral, calcium perchlorate is a strong electrolyte
- (c) KI: neutral, potassium iodide is a strong electrolyte
- (d) NaF: basic, fluoride ion, F⁻, is a weak base
- (e) NH₄Br: acidic, ammonium ion, NH₄⁺, is a weak acid
- (f) NH_4F : amphiprotic, compare K_a of NH_4^+ to K_b of F^- , the larger dominates, in this case the solution will be acidic
- (g) ammonium acetate: amphiprotic, so compare compare K_a of NH_4^+ to K_b of CH_3COO^- , in this case $K_a \approx K_b$ and the solution will be close to neutral

3.

- (a) below pH of 2.3 the charge is +1, pH between 2.3 and 9.9 the overall charge is 0 (zwitterionic form), for pH greater than 9.9 the charge is -1
- (b) extracting into an organic solvent will not occur if the amino acid is charged, so adjust the pH to between 3-9.

4

- (a) 0.01 M HCl (hydrochloric acid is a strong acid and produces a lower pH than an equal amount of a weak acid)
- (b) 0.01 M HClO₄ (perchloric acid is a strong acid and produces a lower pH than an equal amount of a weak acid)
- (c) 1×10^{-4} M HClO₄ (pH = 4, 0.01 M HClO has pH 4.8)

(a) 0.001 M KOH (a lower concentration of strong base will have lower pH, i.e., more acidic, than higher concentration of strong base)

(b) 0.01 M CH₃COONa (weak base, lower pH than strong base)

(c) 0.01 M CH₃COONa (pH \approx 8.4, 1×10⁻⁴ M NaOH has pOH = 4 and pH = 10)

6.

(a) 0.010 M KI

 $I_c = 0.5\{(+1)^2(0.010 \text{ M}) + (-1)^2(0.010 \text{ M})\} = 0.010 \text{ M}$

(b) 0.250 M Ca(NO₃)₂

 $I_c = 0.5\{(+2)^2(0.250 \text{ M}) + (-1)^2(0.500 \text{ M})\} = 0.750 \text{ M}$

(c) 0.250 M AlCl₃

 $I_c = 0.5\{(+3)^2(0.250 \text{ M}) + (-1)^2(0.750 \text{ M})\} = 1.50 \text{ M}$ (we neglect the reaction of Al³⁺ with water)

(d) 0.250 M (NH₄)₂SO₄

 $I_c = 0.5\{(+1)^2(0.500 \text{ M}) + (-2)^2(0.250 \text{ M})\} = 0.750 \text{ M}$

(e) 0.250 M CH₃COONa

$$I_c = 0.5\{(+1)^2(0.250 \text{ M}) + (-1)^2(0.250 \text{ M})\} = 0.250 \text{ M}$$

For d) and e) there is some reaction of NH_4^+ and CH_3COO^- with water, but if you write the equilibria you'll see that there is no change in the number of ions in solution.

7.

(a)

 $I_c = 0.010$ M, use the Debye-Hűckel equation, inserting the d_i for each ion. Sample calculation for OH⁻:

$$\log \gamma_{\text{OH}} = \frac{-0.509(-1)^2(0.010)^{0.5}}{1 + (3.29(0.35)(0.010)^{0.5}}$$

i. K^+ : $\gamma_K = 0.899$

ii. I^- : $\gamma_I = 0.899$

iii. H_3O^+ : $\gamma_{H3O} = 0.914$ iv. OH^- : $\gamma_{OH} = 0.900$

(h)

 $I_c = 0.750$ M, use the Debye-Hűckel equation, inserting the d_i for each ion:

i. Ca^{2+} : $\gamma_{Ca} = 0.223$

ii. NO_3^{-1} : $\gamma_{NO3} = 0.578$

iii. H_3O^+ : $\gamma_{H3O} = 0.752$

iv. OH $^-$: $\gamma_{OH} = 0.602$

(a) Using the activity coefficients from the previous question, set up the expression for $K_{\rm w}$ and substitute activity coefficients and concentrations for the activities.

$$K_{\rm w} = (a_{\rm H3O+})(a_{\rm OH-}) = (\gamma_{\rm H3O+})[H_3{\rm O}^+](\gamma_{\rm OH-})[{\rm OH}^-] = (\gamma_{\rm H3O+})(\gamma_{\rm OH-})K_{\rm w}'$$

$$K_{\text{w}}' = \frac{K_{\text{w}}}{(\gamma_{\text{H3O+}})(\gamma_{\text{OH-}})}$$

$$K_{\rm w}' = \frac{1.01 \times 10^{-14}}{(0.914)(0.900)} = 1.23 \times 10^{-14}$$

$$K_{\rm w}' = \frac{1.01 \times 10^{-14}}{(0.752)(0.602)} = 2.23 \times 10^{-14}$$

9

- $0.2 \text{ M CH}_3\text{COOH}$. acid dissociation is approximately 1%, $I_c = 0.002 \text{ M}$
- $0.2 \text{ M CH}_3\text{COONa}$. $I_c = 0.2 \text{ M}$ (a small amount of acetate reacts with water to form CH₃COOH and OH⁻, since the OH⁻ has the same charge as CH₃COO⁻, there is no effect on ionic strength)
- $0.2~\mathrm{M}$ CH₃COOH in $0.2~\mathrm{M}$ NaCl. I_c slightly higher than $0.2~\mathrm{M}$ due to acid dissociation in addition to the $0.2~\mathrm{M}$ NaCl
- $0.2 \text{ M CH}_3\text{COONa}$ in 0.2 M NaCl. $I_c = 0.4 \text{ M}$
- 1.0 M CH₃COOH. acid dissociation is 0.5%, I_c 0.005M
- (a) Ranking the solutions from lowest to highest ionic strength.
- 0.2 M CH₃COOH,
- 1.0 M CH₃COOH,
- 0.2 M CH₃COONa,
- 0.2 M CH₃COOH in 0.2 M NaCl,
- 0.2 M CH₃COONa in 0.2 M NaCl
- (b) Activity coefficients decrease with increasing I_c , so the solution with the highest I_c , 0.2 M CH₃COONa in 0.2 M NaCl, will produce activity coefficients farthest from the ideal case of 1.0.

Percent-dissociation is equal to:

$$\%-dissoc = \frac{[H_3O^+]}{c_{HA}} \times 100 \%$$

Sample calculation:

$$K_{\rm a}' = \frac{[{\rm H}_3{\rm O}^+]^2}{c_{\rm HA} - [{\rm H}_3{\rm O}^+]}$$

Enter K_{a} and c_{HA} , then rearrange and solve with the quadratic equation. For K_{a} = 1×10⁻².

$$K_{\rm a}' = 0.01 = \frac{[{\rm H}_3{\rm O}^+]^2}{= 0.01 \ {\rm M} - [{\rm H}_3{\rm O}^+]}$$

$$[H_3O^+] = 0.0062 \text{ M}$$

%-dissoc =
$$\frac{0.0062 \text{ M}}{0.01 \text{ M}} \times 100 \% = 62 \%$$

(a rather strong "weak acid")

Other results:

- (a) 3.1 %
- (b) 27 %
- (c) 62 %

11.

The ionic strength is approximately 0.75 M (slightly higher due to acid dissociation). Activity coefficients are 0.75 for H_3O^+ and 0.62 for A^- . Correct K_a to obtain K_a , then do the calculation in the same way as above.

- (a) 4.6 %
- (b) 37 %
- (c) 75 %

You can see there can be a significant difference even for monoprotic acids at high ionic strength.

12.

$$CH_3COOH(aq) + H_2O(aq) \rightleftharpoons CH_3COO^{-}(aq) + H_3O^{+}(aq)$$

$$K_{\text{a}}' = \frac{\text{[CH}_3\text{COO}^-\text{][H}_3\text{O}^+\text{]}}{\text{[CH}_3\text{COOH]}}$$

$$1.75 \times 10^{-5} = \frac{\left[\text{H}_3\text{O}^+\right]^2}{c_{\text{HA}} - \left[\text{H}_3\text{O}^+\right]}$$

Enter 0.0100 M for the acetic acid formal concentration, rearrange, and solve with the quadratic equation.

$$[H_3O^+] = 4.10 \times 10^{-4} \text{ M}$$

 $p[H_3O^+] = 3.39.$

13.

$$I_c = 0.5\{(+1)^2(4.1\times10^{-4} \text{ M}) + (-1)^2(4.1\times10^{-4} \text{ M})\}\$$

= $4.1\times10^{-4} \text{ M}$

Activity coefficients are 0.978 for H_3O^+ and 0.977 for CH_3COO^- , so $K_a' = 1.83 \times 10^{-5}$. Using this value in the calculation results in an insignificant change in the result. $[H_3O^+] = 4.19 \times 10^{-4} \text{ M}$

$$p[H_3O^+] = 3.38.$$

14.

Activity coefficients are 0.765 for H_3O^+ and 0.667 for CH3COO⁻, so $K_a{}' = 3.43 \times 10^{-5}$. Using this value in the calculation results in a change of 0.15 pH units. $[H_3O^+] = 5.69 \times 10^{-4} \text{ M}$ p $[H_3O^+] = 3.25$.

15.

The equilibrium is:

$$CH_3COO^{-}(aq) + H_2O \rightleftharpoons CH_3COOH(aq) + OH^{-}(aq)$$

$$K_{b}' = \frac{K_{w}'}{K_{a}'} = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]}$$

$$K_{\rm b}' = \frac{1.01 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.77 \times 10^{-10}$$

$$5.77 \times 10^{-10} = \frac{[OH^-]^2}{0.0100 \text{ M} - [OH^-]}$$

Solve for [OH $^-$] using the quadratic equation, then convert to [H3O $^+$]. [OH $^-$] = 2.40×10 $^{-6}$ M p[OH $^-$] = 5.62 p[H₃O $^+$] = 14.00 – 5.62 = 8.38.

Activity coefficients are 0.90 for both CH_3COO^- and OH^- . Given the form of the K_b ' expression

$$K_{b'} = \frac{K_{w'}}{K_{a'}} = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]}$$

The effect of the activity coefficients cancel and $K_b' = K_b$. The result is the same as in question 15.

17.

Using the spreadsheet allows you to do multiple calculations quickly. Find the result by tabulating p[H₃O⁺] for each weak acid for $c_{\rm HA} = 0.1$ M, 0.01 M, 0.001 M, etc. Here I set up the calculation using acetic acid and dichloroacetic acid at $c_{\rm HA} = 0.01$ M. If $c_{\rm HA}$ is high and $K_{\rm a}$ is not large, we expect the approximate solution to give the same result as using the quadratic equation.

acetic acid

approximate solution:

$$1.75 \times 10^{-5} = \frac{[\text{H}_3\text{O}^+]^2}{0.001 \text{ M}}$$

$$[H_3O^+] = 4.18 \times 10^{-4} \text{ M}$$

 $p[H_3O^+] = 3.38$

quadratic equation:
$$1.75 \times 10^{-5} = \frac{{{{[{H_3}{O^ + }]}^2}}}{{0.001\;M - {{[{H_3}{O^ + }]}^2}}}$$

$$[H_3O^+] = 4.10 \times 10^{-4} \text{ M}$$

 $p[H_3O^+] = 3.39$

dichloroacetic acid

$$5.5 \times 10^{-2} = \frac{[H_3 O^+]^2}{0.001 \text{ M}}$$

$$[H_3O^+] = 2.35 \times 10^{-2} \text{ M}$$

 $p[H_3O^+] = 1.63$

$$5.5 \times 10^{-2} = \frac{[H_3O^+]^2}{0.001 \text{ M} - [H_3O^+]}$$

$$[H_3O^+] = 0.864 \times 10^{-2} \text{ M}$$

 $p[H_3O^+] = 2.06$

For acetic acid the approximate calculation is very close to the quadratic result. For the strong dichloroacetic acid, the approximation introduces a significant error.

(a)
$$\approx 1 \times 10^{-4} \text{ M}$$

(b) ≈ 0.1 M, so the quick approximation mostly fails for weak acids with relatively large K_a values except at fairly high formal concentrations.

18.

0.001 M acetic acid has a pH of 3.91 using $K_a = 1.75 \times 10^{-5}$. Setting pH = 3.81 and working backwards requires a K_a of 2.85×10^{-5} . Using the usual means of correcting K_a :

$$K_{\rm a} = \frac{\gamma [{\rm A}^{-}] \gamma [{\rm H}_3 {\rm O}^{+}]}{[{\rm H}{\rm A}]} = \gamma^2 K_{\rm a}'$$

$$1.75 \times 10^{-5} = \gamma^2 (2.85 \times 10^{-5})$$

results in $\gamma^2 = 0.625$ and $\gamma = 0.79$. Inserting values for [Na⁺] and [Cl⁻] in ionic-strengthactivity-coefficients.xls leads to an ionic strength of 0.11 M.

19.

This problem is a K_a calculation worked backwards.

$$p[H_3O^+] = 3.85$$

 $[H_3O^+] = 10^{-3.85} = 1.41 \times 10^{-4} M$

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+]^2}{c_{\rm HA} - [{\rm H}_3{\rm O}^+]}$$

$$K_{\rm a} = \frac{(1.41 \times 10^{-4})^2}{0.01 - 1.41 \times 10^{-4}}$$

$$K_a = 2.02 \times 10^{-6}$$

Repeating for the measured pH:

$$\begin{aligned} p[H_3O^+] &= 3.79 \\ [H_3O^+] &= 10^{-3.79} = 1.62 \times 10^{-4} \ M \end{aligned}$$

$$K_{\rm a'} = \frac{[{\rm H}_3{\rm O}^+]^2}{c_{\rm HA} - [{\rm H}_3{\rm O}^+]}$$

$$K_{\rm a'} = \frac{(1.62 \times 10^{-4})^2}{0.01 - 1.62 \times 10^{-4}}$$

$$K_{\rm a'} = 2.67 \times 10^{-6}$$

Usually we look up K_a from a reference table, calculate I_c to find activity coefficients, and use the activity coefficients to determine K_a , which provides a more realistic prediction of a weak acid equilibrium. Here we know K_a and K_a and we can calculate the ionic strength of the solution.

$$[H_3O^+] = 10^{-3.85} = 1.62 \times 10^{-4} M$$

$$K_{\rm a} = \frac{\gamma[{\rm A}^-]\gamma[{\rm H}_3{\rm O}^+]}{[{\rm H}{\rm A}]} = \gamma^2 K_{\rm a}'$$

$$\gamma = \left(K_{\rm a} / K_{\rm a}'\right)^{0.5}$$

$$\gamma = (2.02 \times 10^{-6} / 2.67 \times 10^{-6})^{0.5}$$

$$y = 0.870$$

Now use the Debye-Huckel expression to find I_c

$$\log(0.870) = \frac{-0.509(1)^2 (I_c)^{0.5}}{1 + (3.29(0.4)(I_c)^{0.5}}$$

$$-0.0605 = \frac{-0.509(I_c)^{0.5}}{1 + 1.32(I_c)^{0.5}}$$

$$0.0605 = \frac{0.509(I_c)^{0.5}}{1 + 1.32(I_c)^{0.5}}$$

$$0.0605 + 0.0796(I_c)^{0.5} = 0.509(I_c)^{0.5}$$

$$0.0605 = 0.429(I_{\rm c})^{0.5}$$

$$(I_c)^{0.5} = 0.141$$

$$(I_c) = 0.020 \text{ M}$$