
Brian M. Tissue, Basics of Analytical Chemistry and Chemical Equilibria, (J. Wiley, New York, 2013). 

Chapter 5. End-of-Chapter Solutions  
 
1.  
(a) bucket of deionized water: 
 H2O, H3O+, OH−  
 
(b) small amount of HNO3 added: 
 H2O, H3O+, NO3

−, OH− 
Note that NO3

− is a strong electrolyte so we assume that HNO3 dissociates completely. 
[OH−] will be very small relative to the concentrations of the other ions in solution, but 
OH− is present. 
 
(c) small amount of acetic acid, CH3COOH, added: 
 H2O, CH3COOH, H3O+, CH3COO−, OH− 

CH3COOH dissociates to a small extent, so we call it a weak acid. [CH3COOH] is 
significant and much larger than [H3O+] or [CH3COO−]. One way to define a weak 
acid is simply as an acid that does not dissociate completely in aqueous solution. Again, 
[OH−] will be very small relative to the other concentrations in solution, but OH− is 
present. 
 
 
2.  
(a) Ba(NO3)2: neutral, barium nitrate is a strong electrolyte 
(b) Ca(ClO4)2: neutral, calcium perchlorate is a strong electrolyte 
(c) KI: neutral, potassium iodide is a strong electrolyte 
(d) NaF: basic, fluoride ion, F−, is a weak base 
(e) NH4Br: acidic, ammonium ion, NH4

+, is a weak acid 
(f) NH4F: amphiprotic, compare Ka of NH4

+ to Kb of F−, the larger dominates, in this 
case the solution will be acidic 
(g) ammonium acetate: amphiprotic, so compare compare Ka of NH4

+ to Kb of CH3COO−, in this 
case Ka ≈ Kb and the solution will be close to neutral 
 
 
3.  
(a) below pH of 2.3 the charge is +1, pH between 2.3 and 9.9 the overall charge is 0 (zwitterionic 
form), for pH greater than 9.9 the charge is −1 
(b) extracting into an organic solvent will not occur if the amino acid is charged, so adjust 
the pH to between 3-9. 
 
 
4.  
(a) 0.01 M HCl (hydrochloric acid is a strong acid and produces a lower pH than an equal 
amount of a weak acid) 
(b) 0.01 M HClO4 (perchloric acid is a strong acid and produces a lower pH than an equal 
amount of a weak acid) 
(c) 1×10−4 M HClO4 (pH = 4, 0.01 M HClO has pH 4.8) 
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5.  
(a) 0.001 M KOH (a lower concentration of strong base will have lower pH, i.e., more acidic, 
than higher concentration of strong base) 
(b) 0.01 M CH3COONa (weak base, lower pH than strong base) 
(c) 0.01 M CH3COONa (pH ≈ 8.4, 1×10−4 M NaOH has pOH = 4 and pH = 10) 
 
 
6.  
(a) 0.010 M KI 
Ic = 0.5{(+1)2(0.010 M) +(−1)2(0.010 M)} = 0.010 M 
 
(b) 0.250 M Ca(NO3)2  
Ic = 0.5{(+2)2(0.250 M) +(−1)2(0.500 M)} = 0.750 M 
 
(c) 0.250 M AlCl3  
Ic = 0.5{(+3)2(0.250 M) +(−1)2(0.750 M)} = 1.50 M (we neglect the reaction of Al3+ with water) 
 
(d) 0.250 M (NH4)2SO4 
Ic = 0.5{(+1)2(0.500 M) +(−2)2(0.250 M)} = 0.750 M 
 
(e) 0.250 M CH3COONa  
Ic = 0.5{(+1)2(0.250 M) +(−1)2(0.250 M)} = 0.250 M 
 
For d) and e) there is some reaction of NH4

+ and CH3COO− with water, but if you 
write the equilibria you'll see that there is no change in the number of ions in solution. 
 
 
7.  
(a) 
Ic = 0.010 M, use the Debye-Hűckel equation, inserting the di for each ion. Sample calculation 
for OH−: 

log γOH = −0.509(−1)2(0.010)0.5 
1 + (3.29(0.35)(0.010)0.5 

 
i. K+: γK = 0.899 
ii. I−: γI = 0.899 
iii. H3O+: γH3O = 0.914 
iv. OH−: γOH = 0.900 
 
(b) 
Ic = 0.750 M, use the Debye-Hűckel equation, inserting the di for each ion: 
i. Ca2+: γCa = 0.223 
ii. NO3

−: γNO3 = 0.578 
iii. H3O+: γH3O = 0.752 
iv. OH−: γOH = 0.602 
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8.  
(a) Using the activity coefficients from the previous question, set up the expression for Kw and 
substitute activity coefficients and concentrations for the activities. 
 
Kw = (aH3O+)(aOH−) = (γH3O+)[ H3O+](γOH−)[OH−] = (γH3O+)(γOH−) Kw'  
 

Kw' = Kw 
(γH3O+)(γOH−) 

 

Kw' = 1.01×10−14 = 1.23×10−14 (0.914)(0.900) 
 
b)  

Kw' = 1.01×10−14 = 2.23×10−14 (0.752)(0.602) 
 
 
9. 
0.2 M CH3COOH. acid dissociation is approximately 1%, Ic = 0.002 M 
 
0.2 M CH3COONa. Ic = 0.2 M (a small amount of acetate reacts with water to form 
CH3COOH and OH−, since the OH− has the same charge as CH3COO−, there is no 
effect on ionic strength) 
 
0.2 M CH3COOH in 0.2 M NaCl. Ic slightly higher than 0.2 M due to acid dissociation 
in addition to the 0.2 M NaCl 
 
0.2 M CH3COONa in 0.2 M NaCl. Ic = 0.4 M 
 
1.0 M CH3COOH. acid dissociation is  0.5%, Ic 0.005M 
 
(a) Ranking the solutions from lowest to highest ionic strength.  
0.2 M CH3COOH,  
1.0 M CH3COOH,  
0.2 M CH3COONa,  
0.2 M CH3COOH in 0.2 M NaCl,  
0.2 M CH3COONa in 0.2 M NaCl 
 
(b) Activity coefficients decrease with increasing Ic, so the solution with the highest Ic, 0.2 
M CH3COONa in 0.2 M NaCl, will produce activity coefficients farthest from the ideal 
case of 1.0. 
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10.  
Percent-dissociation is equal to:  

%-dissoc = [H3O+] × 100 % cHA 
 
Sample calculation: 

Ka' = [H3O+]2 
cHA − [H3O+] 

 
Enter Ka' and cHA, then rearrange and solve with the quadratic equation. For Ka'  = 1×10−2. 
 

Ka' = 0.01 = [H3O+]2 
= 0.01 M − [H3O+] 

 
[H3O+] = 0.0062 M 
 

%-dissoc = 0.0062 M × 100 % = 62 % 0.01 M 
(a rather strong “weak acid”) 
 
Other results: 
(a) 3.1 % 
(b) 27 % 
(c) 62 % 
 
 
11.  
The ionic strength is approximately 0.75 M (slightly higher due to acid dissociation). Activity 
coefficients are 0.75 for H3O+ and 0.62 for A−. Correct Ka to obtain Ka', then do the calculation in 
the same way as above. 
 
(a) 4.6 % 
(b) 37 % 
(c) 75 % 
You can see there can be a significant difference even for monoprotic acids at high ionic 
strength. 
 
12. 

CH3COOH(aq) + H2O(aq)  ⇌ CH3COO−(aq) + H3O+(aq) 
 

Ka' = [CH3COO−][H3O+] 
[CH3COOH] 

 

1.75×10−5 = [H3O+]2 
cHA − [H3O+] 
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Enter 0.0100 M for the acetic acid formal concentration, rearrange, and solve with the quadratic 
equation. 
[H3O+] = 4.10×10−4 M 
p[H3O+] = 3.39. 
 
 
13. 
Ic = 0.5{(+1)2(4.1×10−4 M) + (−1)2(4.1×10−4 M)}  
= 4.1×10−4 M 
Activity coefficients are 0.978 for H3O+ and 0.977 for CH3COO−, so Ka' = 1.83×10−5. 
Using this value in the calculation results in an insignificant change in the result. 
[H3O+] = 4.19×10−4 M 
p[H3O+] = 3.38. 
 
 
14.  
Activity coefficients are 0.765 for H3O+ and 0.667 for CH3COO−, so Ka' = 3.43×10−5. 
Using this value in the calculation results in a change of 0.15 pH units. 
[H3O+] = 5.69×10−4 M 
p[H3O+] = 3.25. 
 
 
15.  
The equilibrium is: 

CH3COO−(aq) + H2O ⇌ CH3COOH(aq) + OH−(aq) 
 

Kb' = Kw'  = [CH3COOH][OH−] 
Ka' [CH3COO−] 

 

Kb' = 1.01×10−14 = 5.77×10−10  1.75×10−5 
 

5.77×10−10 = [OH−]2 
0.0100 M − [OH−] 

 
Solve for [OH−] using the quadratic equation, then convert to [H3O+]. 
[OH−] = 2.40×10−6 M 
p[OH−] = 5.62 
p[H3O+] = 14.00 − 5.62 = 8.38. 
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16.  
Activity coefficients are 0.90 for both CH3COO− and OH−. Given the form of the Kb' expression 

Kb' = Kw'  = [CH3COOH][OH−] 
Ka' [CH3COO−] 

The effect of the activity coefficients cancel and Kb' = Kb. The result is the same as in question 
15. 
 
 
17.  
Using the spreadsheet allows you to do multiple calculations quickly. Find the result by 
tabulating p[H3O+] for each weak acid for cHA = 0.1 M, 0.01 M, 0.001 M, etc. Here I set up the 
calculation using acetic acid and dichloroacetic acid at cHA = 0.01 M. If cHA is high and Ka' is not 
large, we expect the approximate solution to give the same result as using the quadratic equation. 
 
acetic acid 
 
approximate solution: 

1.75×10−5 = [H3O+]2 
0.001 M 

 
[H3O+] = 4.18×10−4 M 
p[H3O+] = 3.38 
 
quadratic equation: 

1.75×10−5 = [H3O+]2 
0.001 M − [H3O+] 

 
[H3O+] = 4.10×10−4 M 
p[H3O+] = 3.39 
 
dichloroacetic acid 
 

5.5×10−2 = [H3O+]2 
0.001 M 

 
[H3O+] = 2.35×10−2 M 
p[H3O+] = 1.63 
 

5.5×10−2 = [H3O+]2 
0.001 M − [H3O+] 

 
[H3O+] = 0.864×10−2 M 
p[H3O+] = 2.06 
 
For acetic acid the approximate calculation is very close to the quadratic result. For the strong 
dichloroacetic acid, the approximation introduces a significant error.  
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(a) ≈ 1×10−4 M 
(b) ≈ 0.1 M, so the quick approximation mostly fails for weak acids with relatively large Ka 
values except at fairly high formal concentrations. 
 
 
18.  
0.001 M acetic acid has a pH of 3.91 using Ka = 1.75×10−5. Setting pH = 3.81 and working 
backwards requires a Ka' of 2.85×10−5. Using the usual means of correcting Ka: 
 

Ka  = γ[A
−]γ[H3O+] = γ2Ka' [HA] 

 
1.75×10−5 = γ2(2.85×10−5) 
 
results in γ2 = 0.625 and γ = 0.79. Inserting values for [Na+] and [Cl−] in ionic-strengthactivity-
coefficients.xls leads to an ionic strength of 0.11 M.  
 
 
19. 
This problem is a Ka' calculation worked backwards. 
p[H3O+] = 3.85 
[H3O+] = 10−3.85 = 1.41×10−4 M 
 

Ka = [H3O+]2 
cHA − [H3O+] 

 

Ka = (1.41×10−4)2 
0.01 − 1.41×10−4  

 
Ka = 2.02×10−6  
 
Repeating for the measured pH: 
 
p[H3O+] = 3.79 
[H3O+] = 10−3.79 = 1.62×10−4 M 
 

Ka'  = [H3O+]2 
cHA − [H3O+] 

 

Ka'  = (1.62×10−4)2 
0.01 − 1.62×10−4  

 
Ka'  = 2.67×10−6  
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Usually we look up Ka from a reference table, calculate Ic to find activity coefficients, and use 
the activity coefficients to determine Ka', which provides a more realistic prediction of a weak 
acid equilibrium. Here we know Ka and Ka' and we can calculate the ionic strength of the 
solution.  
 
[H3O+] = 10−3.85 =  1.62×10−4 M 
 

Ka  = γ[A
−]γ[H3O+] = γ2Ka' [HA] 

 
γ = (Ka / Ka' )0.5 
 
γ = (2.02×10−6/2.67×10−6)0.5 
 
γ = 0.870 
 
Now use the Debye-Huckel expression to find Ic  
 

log(0.870) = −0.509(1)2(Ic)0.5 
1 + (3.29(0.4)(Ic)0.5 

 

−0.0605 = −0.509(Ic)0.5 
1 + 1.32(Ic)0.5 

 

0.0605 = 0.509(Ic)0.5 
1 + 1.32(Ic)0.5 

 
0.0605 + 0.0796(Ic)0.5 = 0.509(Ic)0.5 
 
0.0605 = 0.429(Ic)0.5 
 
(Ic)0.5 = 0.141 
 
(Ic) = 0.020 M 
 


